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1. Introduction

Current efforts to confront the prospect of anthropogenic climate change present
policymakers and intergovernmental negotiators with a host of challenges. The
technically-intensive nature of the policy debates that surround this issue are com-
plex and multifaceted. Indeed, much of the uncertainty that underlies the green-
house debate arises, in part, from an incomplete understanding of atmospheric and
climate science. 1 Even a cursory read of the day’s newspapers reveals that climatic
change is likely to impact society in ways that are, perhaps, only just beginning to
be understood.

Nowhere, it seems, does this sentiment ring more true than for American insurers
and reinsurers. As a key instrument and enabler of loss mitigation and risk transfer,
the U.S. insurance industry lies at the nexus of several crucial dimensions of the cli-
mate change problem, especially as it relates to the potential implications of climate
change for society and the global economy. Having sustained record-breaking natu-
ral catastrophe losses, insurers and reinsurers are openly — and, indeed, justifiably
— questioning the potential linkage between anthropogenic climate change and
extreme weather, looking at both the likely short-term implications for the indus-
try, as well as potential long-term impacts on financial performance and corporate
sustainability. 2

1 The sources of scientific uncertainty within this debate are many. For example, difficulties in predicting future levels of an-
thropogenic emissions of key greenhouse gases and their effects on the global carbon cycle make it difficult to reliably assess
the potential magnitude and impacts of global climate change. The climate change problem is, in addition, characterized by
several unique features, all of which complicate efforts to arrive at reasoned responses to the prospect of anthropogenic global
warming. For example, the time horizons that must be considered in the evaluation of climate change response strategies are
on the order of one or more centuries. And although the climate change problem is global in scale, the spatial and temporal
distribution of impacts is likely to be non-uniform. Moreover, the physical inertias that drive the global climate system are
such that the potential social-economic and environmental impacts associated with climatic change are, to varying degrees,
irreversible.
2 In truth, interest in this topic within the industry dates as far back as the late 1980s, with the appearance of Hurricane
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Situated at the very heart of these discussions, of course, are the scientific debates
that surround the issue of global climate change. Prudent insurers will pay close at-
tention to these debates for at least three reasons. First, they will want to know the
full range of informed opinion that exists as to how the Earth’s climate is chang-
ing, as well as the potential consequences of such change for a broad range of
possible (re)insurance-related outcomes. Second, insurers will want to take note of
the balance of scientific opinion on these matters so that they can make informed
choices about other (perhaps non-weather-related) risks they underwrite that could
be affected by climatic change — perhaps in ways that are not yet well understood.
Third, insurers will also be concerned about the accumulation of large natural catas-
trophe losses with potentially significant, but uncorrelated, losses such as terrorism.
While the probabilities associated with such uncorrelated events are independent,
the financial ability to pay claims in the wake of either type of loss is not.

Insurance in an age of global climate change is, in essence, a dual gamble. In the
first instance, the gamble is one that sees insurers and reinsurers engaged in the
process of making a series of (partially) informed bets on the potential frequency,
severity, and consequences of natural catastrophe events — a task that is, in itself,
fraught with uncertainty. In the second instance, though, global climate change
holds the potential to, in effect, confound our current understanding of the causes
and consequences of extreme weather events. If this portion of the dual gamble
yields unfavorable outcomes for insurers, then it may signal the need for potentially
drastic shifts in the way these risks are construed, assessed, and managed.

The prospect of anthropogenic climate change has potentially far-reaching impli-
cations for the insurance and reinsurance industries. Depending on how these risks
are perceived by individual players within the industry, there exists a broad range of
possible response options. In the best of all possible worlds, for example, insurers
can opt to assume that the future will look much like the past. In this “business-
as-usual” scenario, insurers go about their business of managing risk in ways that
are largely consistent with what they have traditionally done in the past. Under this
mindset, traditional paradigms and methods are deemed sufficient to adequately
assess and manage these risks. However, what if insured natural catastrophe losses
continue to mount in ways that continue to surprise decision-makers and elude re-
liable forecasting? Faced with this situation, insurers may choose to direct more
effort and resources at (i) better appraising these risks; and (ii) better managing
their relevant exposure levels. This course of action, of course, proceeds from an
almost axiomatically accepted doctrine within the industry, namely, that the risks in
question can be reliably appraised using the language of probability and statistics.
The global climate system is, however, fundamentally chaotic in nature, which may
sharply limit the reliability of short- to medium-term extreme weather forecasts, as

Gilbert in 1988. In addition to the insured losses arising from Hurricane Gilbert, interest in climate change was also spurred
by signals from the scientific community that hurricane activity in the North Atlantic was possibly being influenced by
anthropogenic warming. In 1988, for example, the American Meteorological Society issued a policy statement postulating
that greenhouse warming would, in the long run, lead to “a higher frequency and greater intensity of hurricanes” [3]. Recent
efforts to explore this topic include refs. [2] and [32].
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well as inhibit the precise estimation of key weather-related factors (e.g., humidity,
precipitation, atmospheric and sea-surface temperature, and wind activity).

As we discuss at length below, the highly uncertain state of scientific knowledge
concerning the potential linkage between climate change and extreme weather does
not allow us to say much that is definitive or certain. And while insurers and rein-
surers are well-accustomed to confronting situations that are characterized by risk
and uncertainty, the issue of anthropogenic climate change carries with it enough
ambiguity and uncertainty that it generates considerable anxiety for industry stake-
holders. In essence, the problem stems from the fact that while insurers and under-
writers are often able to reach requisite levels of comfort in situations where the
attendant risks can be reliably characterized and appraised, they are far less com-
fortable in situations where scientific uncertainty complicates a decision-making
environment that is already fraught with uncertainty and complexity. Of course,
complicating matters further is the fact that all of this plays out in an environment
where it is often difficult to parse and disentangle the political rhetoric and consid-
erations that inevitably become part of the dialogue on how the global environment
should be managed.

A fundamental question that we pose here, then, is whether the risks posed by
global climate change are, in some way, structurally different than what has previ-
ously come to pass, thereby presenting insurers with new — and, some would ar-
gue, unprecedented — challenges, requiring a fundamental rethinking of the mind-
sets and methods that are used to manage these risks. Indeed, it may be the case
that traditional underwriting and risk management methods are not adequate for
this task. In this regard, three issues are seen to be central:

• To what degree can the scientific uncertainty underlying the climate change and
extreme weather problem be reliably characterized and evaluated by insurers and
reinsurers?

• To what degree does the global climate system itself hold the potential for sur-
prise to decision-makers?

• How resilient is the system to these shocks, and what actions might insurers and
reinsurers take to minimize the effects of these shocks?

In what follows, we take up these questions in the context of the potential linkage
that may exist between anthropogenic climate change and extreme weather, with
particular emphasis on tropical cyclone activity in the North Atlantic. Our remarks
are organized along the following lines. We begin, in Section 2, with an overview of
key aspects of climate science, together with a discussion of the various approaches
that scientists currently use to model various features of the global climate system.
With this as background, Section 3 summarizes and appraises the best available
scientific evidence on the potential linkage between global climate change and ex-
treme weather. As part of this discussion, we explore both empirical and theoreti-
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cal insights concerning efforts to produce reliable projections of future changes in
tropical cyclone activity. We close this section with a discussion of issues pertain-
ing to storm vulnerability and exposure, especially in coastal areas. Section 4 then
explores the resilience of the property/casualty (P/C) industry to extreme weather
events. In particular, we explore the profitability consequences of massive losses
from one exemplary form of extreme weather — a string of storms like those strik-
ing the U.S. in 2004 (hereafter referred to as “Quartet-scale storms”), as well as the
prospect of a Katrina-scale storm combined with a mass terror attack on the scale
of 9/11 — on the theory that prudence in the face of scientific uncertainty war-
rants consideration of a few worst-case scenarios. The results of this econometric
exercise suggest a high degree of macro-resilience for the insurance industry in the
limited sense that the system, with its current operating procedures, can withstand
a series of extreme weather shocks. We conclude, in Section 5, with a closing com-
mentary on these issues, where we discuss some of the long-term challenges the
P/C industry is likely to face on matters pertaining to global climate change.
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2. The Scientific Basis for Climate Change

The history of scientific study of climate change is longer than most people realize.
More than a century ago, for example, Fourier [14] was the first to notice that the
Earth is a greenhouse, kept warm by an atmosphere that reduces the loss of infrared
radiation. The overriding importance of water vapor as a greenhouse gas was rec-
ognized even then. In the late 1890s, Arrhenius [4] was the first to quantitatively
relate the concentration of carbon dioxide (CO2) in the atmosphere to global sur-
face temperature. Given this long-standing history, one might lament the fact that
— perhaps owing, in part, to the politically-charged nature of the topic — many
people mistakenly assume that the science that underlies our current understanding
of climatic change is, in some way, suspect or unreliable. Of course, the nature of
the greenhouse debate is far too complex and multifaceted to lend itself well to sim-
plistic “is it happening or isn’t it?” characterizations. In what follows, we explore
various key features of the scientific basis for climate change, together with vari-
ous analytical efforts directed at modeling the core elements of the global climate
system.

The Natural Greenhouse Effect

The global climate system is comprised of several major components, all of which
interact with one another in complex and often unpredictable ways. The funda-
mental process that drives the climate system is heating by incoming short-wave
radiation and cooling by long-wave radiation into space. In general, the climate
system of the Earth can be seen to consist of five basic components:

• Atmosphere. Absorbs and emits infrared radiation; clouds promote cooling by
reflecting sunlight.

• Oceans. Exert a large influence on current climate conditions; absorb over half
of the solar radiation reaching the Earth’s surface. The heat capacity of the ocean
delays the response of the climate system.

• Land. Atmospheric processes are strongly coupled to the land surface of the
planet. The soil interacts with the atmosphere via exchanges of aerosols, gases,
and moisture. Such exchanges are influenced by soil type and vegetation, and are
strongly dependent on soil wetness.

• Ice. Reflects sunlight; sea-ice reduces heat exchange between the ocean and at-
mosphere, and affects climate on time-scales of seasons and longer.
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• Biosphere. Affects climate by influencing atmospheric composition, albedo, 3

and hydrology. Also controls the magnitude of the fluxes of several greenhouse
gases (GHGs), including CO2 and methane.

These basic components of the global climate system are depicted in Figure 1.
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Fig. 1. Simplified representation of the global climate system.

The Earth’s climate is largely influenced by changes in radiative forcing 4 that
arise from changes in the concentrations of radiatively-active gases in the tropo-
sphere and the stratosphere. 5 As Figure 2 illustrates, the global climate system
is driven primarily by incoming solar radiation. On an annually-averaged global
scale, roughly one-third of the incoming solar radiation is reflected back out into
space. Some of the outgoing (infrared) radiation is partially absorbed, and is then
re-emitted by naturally-occurring GHGs. This so-called natural greenhouse effect
warms the surface temperature of the Earth by approximately 33◦C more than it
would otherwise be if naturally-occurring GHGs were not present. The remaining
two-thirds of the incoming radiation is absorbed by the atmosphere, land, ice, and
ocean surfaces.

3 Albedo is defined as the ratio of reflected to incident radiation, and provides a measure of the reflectivity of the earth’s
surface and its atmosphere.
4 Radiative forcing is formally defined as a change in the average net radiation at the tropopause — the region between
the troposphere and the stratosphere — brought about by changes in either the incoming solar radiation, or in the outgoing
infrared radiation. Radiative forcing therefore disturbs the balance that exists between incoming and outgoing radiation.
As the climate system evolves over time, it responds to the perturbation by slowly re-establishing the radiative balance. In
general, positive radiative forcing tends (on average) to give rise to surface warming, whereas negative forcing tends (on
average) to give rise to surface cooling.
5 The troposphere is the lowest region of the atmosphere, and the stratosphere is the zone of the atmosphere above the
troposphere.
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Fig. 2. Schematic representation of the global long-term radiative balance of the Earth’s
atmosphere.

In Figure 2, the solar radiation that is absorbed by the Earth’s atmosphere and
surface is — in the long run — balanced by the outgoing infrared radiation. In
equilibrium, the absorbed solar energy is balanced by the radiation that is emitted
to space by the planet surface and the atmosphere. Any factor that disturbs this
balance is called a radiative forcing agent [21].

The Centrality of CO2

Carbon dioxide is the most important anthropogenic GHG, largely due to the fact
that its emissions are directly influenced by human activities. Indeed, long-term
predictions of anthropogenic emissions of key GHGs play a central role in cur-
rent efforts to obtain reliable predictions of future concentrations of radiatively and
chemically important trace species in the Earth’s atmosphere. Understanding the
sources of the long-lived gases — CO2, methane (CH4), nitrous oxide (N2O), and
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chlorofluorocarbons (CFCs) — is central to assessing changes in radiative forcing
that will ultimately influence climatic change in the future. 6

Ignoring the uncertain effects of the CFCs and changes in ozone, increases in CO2

have, to date, contributed to roughly 70% of the enhanced greenhouse effect, with
methane (CH4) and nitrous oxide (N2O) accounting for the remaining ∼ 23% and
∼ 7%, respectively. Carbon dioxide is therefore likely to play a dominant role in
future warming, whereas, over the course of the next century, the role of the other
key GHGs is expected to be relatively minor. 7

GHGs are typically classified in terms of their levels of concentration in the at-
mosphere, and in terms of the strength of their absorption of infrared radiation.
Since pre-industrial times, CO2 levels in the atmosphere have increased by more
than 25%, from approximately 280 ppmv 8 to approximately 356 ppmv [5]. At
present levels of atmospheric CO2 concentrations, the relation between changes
in the current GHG concentration levels and radiative forcing is strongly nonlin-
ear [5]. This relation is typically expressed in terms of changes in net radiative flux
at the tropopause (i.e., the top of the troposphere). In formal terms, these changes
are represented as

∆F (t) = f
(

C(t0), C(t)
)
,

where ∆F (t) denotes the change in net flux measured in Watts per square me-
ter (Wm−2) corresponding to a volumetric concentration change from the initial
concentration level at time period t0 to the concentration level at some later time
period t.

Climate modelers utilize detailed radiative transfer models to explore the relation-
ships that exist between radiative forcing and the levels of atmospheric concentra-
tion of key GHGs. These radiative transfer models simulate the variation of the
absorption and emission for specific GHGs, as a function of wavelength. 9

The concentration-forcing relationships that are derived from radiative transfer mod-
els are typically characterized by complicated functional forms. These complex
representations can, however, be used to derive simpler analytical expressions. For
carbon dioxide, the functional form of f is well approximated by presuming a log-
arithmic dependence of ∆F (t) on C(t). Specifically,

6 Because of their influence on atmospheric chemistry, emissions of several short-lived gases — such as nitrogen oxides
(NOx), sulfur dioxide (SO2), and carbon monoxide (CO) — are also important.
7 Long-term projections of non-CO2 GHGs are, at present, highly uncertain. Given this consideration, together with those
outlined above, it is common practice to take these other gases and convert them to equivalent amounts of CO2. These
so-called CO2-equivalents represent the amounts of CO2 that would give rise to the same radiative forcing.
8 1 ppmv ≡ 1 part per million by volume.
9 These models also account for any overlap that exists between the absorption bands of the gases, as well as for the effects
that clouds have on radiative transfer [21].
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∆F (t) = 6.3 ln

(
C(t)

C(t0)

)
, (1)

where C(t0) and C(t) are the atmospheric concentrations of CO2 in ppmv at times
t0 and t, respectively. 10

It is worth noting that the uncertainty that underlies the specification of the CO2

concentration-forcing relationship arises from several sources. First, the radiative
transfer models that are used to derive the complicated functional forms that ulti-
mately give rise to Eq. (1) are themselves uncertain. For example, Shine et al. [40]
cite a 1984 study that places the uncertainties at around ±10%.

In a more recent study, Cess et al. [8] document the uncertainties in carbon diox-
ide radiative forcing in 15 general circulation models (GCMs) — by far the most
sophisticated tools for performing global climate simulations. A series of CO2 dou-
bling experiments revealed substantial differences among the 15 models. 11 In their
efforts to arrive at a comparative understanding of the scientific differences and
similarities in these 15 GCMs, Cess et al. found that the largest contributor to the
observed model-to-model variations was the carbon dioxide radiation parameter-
izations used in the GCMs. In addition, they found that the models used in the
study gave a global warming average of approximately 4◦C, and produced an aver-
age CO2 forcing of 4.0 Wm−2. These results are equivalent to an average climate
sensitivity of 1◦C of warming for each 1 Wm−2 of radiative forcing.

In discussing the implications of this finding, Cess et al. make the following ob-
servation: Imagine that the 15 GCMs used in the study possess the same climate
sensitivity of 1◦C warming per 1 Wm−2 and, in addition, possess the same observed
forcing variation. Under this set of assumptions, for presumed CO2 concentration
levels, the global warming projections given by the 15 GCMs would range from
3.4◦C to 4.7◦C just because of their forcing differences. This is an important obser-
vation, in that the range is substantial and, moreover, constitutes nearly half of the
often-quoted Intergovernmental Panel on Climte Change (IPCC) climate sensitiv-
ity range of 1.5◦ – 4.5◦C. We note that the IPCC range is based only on feedback
uncertainties, and assumes no differences in the forcing. Also, the 3.4◦C lower-
bound specified by Cess et al. is well above the IPCC “best estimate” of 2.5◦C.
Findings such as this provide an initial basis for explaining the degree of scientific
uncertainty that surrounds current climate sensitivity estimates. 12

10Equation (1) yields reasonable approximations of CO2-induced radiative forcing for values of C(t) less than 1000 ppmv.
11In accounting for these differences, Cess et al. suggest several hypotheses: (i) Differences in the lapse rate among the mod-
els; (ii) Differences in the atmospheric water vapor distributions among the models; (iii) Differences in the parameterization
of radioactive overlap in the radiation codes of the models; and (iv) Differences in the GCM cloud fields.
12For a discussion concerning the range of scientific opinion about climate sensitivity, as well as other key climate-change-
related quantities, see, e.g., Morgan and Keith [33].
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Uncertainty in Models of the Global Climate System

Modeling the components and processes that, together, make up the global climate
system is a complicated task. Numerical models attempt to mimic or simulate the
physical processes that give rise to climatic change. In order to simulate the dy-
namic behavior of the climate system, modelers utilize simplified representations,
most of which are based on physical laws governing such factors as mass, momen-
tum, and energy flows and exchanges in the atmosphere.

The task of arriving at realistic representations of the global climate system’s main
components and processes is complicated by a number of factors. First, many of
the physical laws that govern the processes that influence climate change are poorly
understood. 13

The uncertainties that underlie modern atmospheric science’s best physical repre-
sentations of clouds and oceans limit the predictive capability of even the most
sophisticated climate models. Most climate models are extremely sensitive to the
manner in which clouds are represented. Intuitively, clouds have both a positive and
a negative effect on warming: Clouds exert a negative effect on temperature by re-
flecting sunlight off into space, and they have a positive effect by trapping heat from
below. It is generally accepted that cloud feedback is an important determinant of
observed differences in estimates of global warming [33]. Conjectures about the di-
rection and magnitude of cloud feedback effects vary significantly; also, the factors
that most influence cloud behavior (e.g., type, amount, height distribution, etc.) are
poorly understood, and realistic models are several years away.

An important aspect of global climate change assessment concerns the manner in
which the carbon cycle is modeled. The storage and transport of carbon in the
atmosphere is a process that is only partially understood. During the course of the
past decade, atmospheric scientists have improved their understanding of how the
removal of CO2 from the atmosphere is distributed between sinks in the ocean and
on land. In this biological, chemical, and physical process, carbon is transferred or
exchanged between the atmosphere, oceans, and terrestrial biosphere.

The role of the oceans in absorbing CO2, as well as in storing and transporting
heat, is also poorly understood. The Earth’s oceans transport roughly 50% of the
heat carried from the equator to the pole. In the global climate system, the net up-
take of anthropogenic CO2 by the deep oceans occurs very slowly. Consequently,
anthropogenic CO2 has a long-lasting effect on atmospheric concentrations and
future climate. While it is true that the oceans also slow temperature change, fun-
damental uncertainty exists as to the rate at which heat is transported downward in

13For example, as Lindzen [28] points out, very little is known about the factors that determine the equator-to-pole temper-
ature distribution. Knowledge about this distribution bears directly on our understanding of the processes that determine the
mean surface temperature of the Earth.
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the ocean. Later, we discuss the potential role that the oceans play in influencing
tropical cyclone activity.

The task of modeling the global climate system is further complicated by other
factors, as well. For example, the specification of the climate system’s initial con-
ditions is an inherently problematic task. Equally important, the global climate sys-
tem is characterized by a complex array of interactions and feedbacks, knowledge
of which is also highly uncertain. Complicating matters further is the fact that these
climatic interactions and feedbacks occur at different levels of both spatial and tem-
poral resolution.

Types of Climate Models

There are, of course, many ways to model the global climate system. In general, all
numerical climate models must address the following set of issues [30]:

• Radiation. The input and absorption of incoming solar radiation; emission of
outgoing infrared radiation.

• Dynamics. The movement of energy around the globe, from low to high lati-
tudes, as well as vertical movements.

• Surface Processes. The role of land/ocean/ice interactions and the resultant
change(s) in albedo, emissivity, and surface-atmosphere energy interchanges.

• Resolution in Space and Time. The time-step of the model, as well as the res-
olution of the horizontal and vertical scales.

The manner and degree to which these facets of the climate system are represented
in numerical climate models depends, in large measure, upon the climate model
type. In general, there are four basic types of climate models:

• Energy Balance Models. Zero- and one-dimensional models that are used to
predict either globally averaged temperature or the variation of the Earth’s sur-
face temperature with latitude. Models of this type are useful for evaluating
scenarios of future climate change, as well as for developing parameterizations
that explore climate system sensitivities. Energy balance models (EBM) play
a prominent role in so-called integrated assessments of global climate change,
which seek to integrate the science and economics of climate change in ways
that are useful to decision-makers. In Appendix A, we present two EBM-based
representations of the global climate system that are often used in integrated as-
sessments of climate change. 14

14See, e.g., Valverde [45].
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• One-Dimensional Radiative-Convective Models. Models that make explicit
calculations of the fluxes of solar and terrestrial radiation. Models of this type
usually include detailed representations of radiative transfer and atmospheric
chemistry. Such models usually compute vertical globally averaged temperature
profiles by modeling the radiative process with a “convective adjustment” that
re-establishes a predetermined lapse rate. 15

• Two-Dimensional Statistical Dynamical Models. Models that represent sur-
face processes and dynamics in a zonally averaged manner, with a vertically
resolved atmosphere.

• General Circulation Models. Models that utilize fundamental equations that
describe flows of mass, momentum, and heat, to model the three-dimensional
nature of the atmosphere and ocean; such models typically have a higher spatial
resolution than other types of climate models.

Climate Sensitivity and Intermodel Comparisons

An important scientific uncertainty in the greenhouse debate concerns the expected
change in global-mean surface temperature that results from increases in atmo-
spheric concentrations of key GHGs. The models described above all play a role
in present-day efforts to assess the influence of GHGs on climatic change. These
gases include — in addition to CO2 — methane (CH4), nitrous oxide (N2O), the
CFCs, and, most importantly, water vapor. 16 Factors that determine the atmo-
spheric concentrations of GHGs from known emissions are moderately well un-
derstood, though current forecasts of CFC concentrations are thought to be much
more certain than forecasts of CO2, CH4, and N2O.

A useful benchmark for comparing models is the climate sensitivity value, which is
defined as the equilibrium response of the global climate system to a static doubling
of atmospheric CO2 concentrations. Most scientists believe that the range 1 – 5◦C is
likely to contain the true climate sensitivity value. 17 If there were no change in the
concentration of water vapor, a static doubling of atmospheric CO2 would give rise
to a global mean surface temperature increase of approximately ∆Td ≈ 1.2◦C. 18

However, as water evaporates with increasing temperature, the concentration of
water vapor in the Earth’s atmosphere is expected to increase; this effect could,

15The lapse rate is the rate at which temperature decreases as a function of height in the atmosphere.
16The concentration of water vapor varies rapidly in space and time, and this variation arises from climate feedback mecha-
nisms that are currently not well understood.
17See, e.g., National Academy of Sciences [34] and the Intergovernmental Panel on Climate Change [20]. Cf. Jacoby and
Prinn [24, p. 13–16] for an insightful discussion of the various interpretations that can be attached to the Intergovernmental
Panel’s climate sensitivity range. The controversy and uncertainty surrounding this value is still very much alive. See, e.g.,
Harrabin [17].
18This estimate depends on the assumption that the cooling of the Earth is from the stratosphere, and that there is a fixed air
temperature distribution with height.
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in turn, amplify warming. In addition, water can introduce interactive feedbacks
into the climate system, such as water vapor, clouds (especially cirrus clouds), and
snow-ice albedo. Feedbacks such as these introduce considerable uncertainty into
long-term predictions of global-mean surface temperature changes resulting from
increases in atmospheric concentrations of key GHGs.

Global-mean surface temperature, ∆Ts, is roughly related to ∆Td by the formula

∆Ts = ∆Td / (1− f),

where f denotes the sum of all climate feedbacks. The water vapor feedback is rel-
atively simple, in that a warmer atmosphere is likely to contain more water vapor.
This process gives rise to a positive feedback: An increase in one greenhouse gas,
CO2, induces an increase in another greenhouse gas, namely, water vapor. Cloud
feedback, however, is harder to evaluate, because it depends on the difference be-
tween the warming caused by the reduced emission of infrared radiation from the
Earth into outer space and the cooling through reduced absorption of solar radi-
ation. The net effect is determined by the amount of clouds, their altitude, and
their water content. Estimates for ∆Ts from different models vary from 1.9◦C to
5.2◦C [10].

It is worth noting that two models which give similar values for ∆Ts values can dif-
fer in the effects of various feedback mechanisms. For example, two GCM models
— GFDL and GISS 19 — show an unequal temperature increase as clouds are in-
cluded (from 1.7◦C and 2.0◦C to 2.0◦C and 3.2◦C, respectively). The effects of ice
albedo in these two models are different, but opposite, so that the results converge
(4.0◦C versus 4.2◦C, respectively). What this example shows is that agreement be-
tween models may be spurious and potentially misleading. In addition, many cli-
mate experts believe that f is high enough (∼ 0.70) that even small increases in
this value could result in a runaway warming that is not predicted by current mod-
els [29,41].

Key Uncertainties in Regional Climate Prediction

Focusing, as we have, on issues pertaining to scientific uncertainty, it is easy to
lose sight of the one challenge that is absolutely central to most real-world decision
contexts where climate is a key consideration, namely, regional climate prediction.
The need for predictive capability of this kind permeates many of the most im-
portant practical dimensions of the greenhouse debate, including carbon emissions
projection, catastrophe modeling, climate prediction, economic analysis of control
policies, and the assessment of social and environmental impacts. Unfortunately,

19See, e.g., Hansen et al. [16].
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this is one area in particular where the science of climate change is unlikely to
yield much in the way of useful technology for many years to come.

One reason for this lack of predictive capability is that General Circulation Mod-
els — by far the most sophisticated tools for performing global climate simula-
tions — are ill-suited for this task, in that the computational costs required to per-
form long-term simulations of regional climate are largely prohibitive. As a conse-
quence, GCMs are typically “downscaled” — with concomitant increases in spatial
or temporal resolution — in order to emphasize particular aspects of the climate
system that lend themselves to regional predictions of climate change.

While progress has been made in the development of increasingly sophisticated
downscaled models, the uncertainties inherent in these reduced models is vast. For
instance, as with any global climate model, these models require that numerical val-
ues be assigned to model parameters before they can be used to generate medium-
to long-term projections of future climate. Of course, even conditional upon having
specified a particular model’s functional form, modelers are almost always uncer-
tain a priori about what numerical values to assign to its parameters. 20 Within
these kinds of downscaled models, examples of important parameter uncertainties
include the following:

• Cloud Feedback. The cloud feedback simulated by many downscaled GCMs
depends on the parameterizations of cloud cover. Letting n(φ, z) denote cloud
cover at latitude φ and height z, the parameterization of cloud cover takes the
functional form

n(φ, z) = max
{

0,
A [r(φ, z)− rc]

(1− rc)

}
,

where

r = Relative humidity at(φ, z);

rc = Critical humidity threshold;

A = Empirical constant.

This parameterization is similar to the parameterization used in many GCMs.
Given this prescription for cloud cover as a function of humidity, the change in
n(φ, z) over location and time will determine cloud feedback behavior. Condi-
tional on accepting this model structure, knowledge of either A or rc would allow
us to compute a reasonable value of the other from observed data. Unfortunately,
the values of A or rc that most adequately represent cloud cover are not well
understood.

20The continuing controversy about the numerical value to assign to the feedback multiplier in the computation of equilib-
rium change in global-mean surface temperature is an example of a parameter uncertainty that gives rise to large spreads in
expert judgements about climate sensitivity.
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• Rapidity of Deep Ocean Mixing. Both heat and CO2 mixing within the deep
ocean are often represented as simple diffusion within downscaled climate mod-
els. The magnitude of the diffusion coefficient, which is a function K(φ) of lati-
tude, is uncertain, but lies within a broad , finite range, 0 < K(φ) < 10 cm2/sec.
Heat flux F (φ, z) at a given φ and z is directly proportional to K in the diffusion
equation

F (φ, z) = −ρ C K(φ)
∂T (φ, z)

∂z
,

where ρ is the water density, C is water heat capacity, and ∂T (φ, z)/∂z is the
temperature gradient in the vertical direction. If K(φ) is uncertain, it follows
that heat flux F (φ, z) is also uncertain.

• Initial Temperature of the Deep Ocean. Current scientific knowledge does not
allow us to know with certainty if the deep ocean temperature is, in actuality,
an equilibrium temperature. If T0(φ) is the deep ocean temperature for current
climate and Te(φ) is the corresponding deep ocean equilibrium temperature, then
the future evolution of temperature depends on T0(φ) − Te(φ) = δT (φ). But,
δT (φ) is not known with certainty.

Naturally, computational capacity places very stringent boundaries on our ability
to perform systematic and exhaustive analyses of regional climate change. Even
though many downscaled models are hundreds of times faster than their GCM
counterparts (at, say, 4◦ × 5◦ resolution), the computational costs involved in run-
ning these downscaled models are sufficiently high to make their integration into
formal risk management frameworks a practical impossibility at the present time. 21

In what follows, we explore the challenges that scientists and modelers currently
face in arriving at reliable estimates of future changes in regional climate in the con-
text of ongoing efforts to explore the manner and degree to which anthropogenic
climate change and extreme weather are conjoined.

21In order to deal effectively with these computational restrictions, catastrophe modelers and risk managers must focus their
modeling efforts on the development of reduced-scale representations of the global climate system, an example of which is
presented in Appendix A.
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3. Climate Change and Extreme Weather

The preceding section explored several key facets of the scientific basis that un-
derlies our current understanding of the causes and consequences of global climate
change. As part of this discussion, we explored several types of models that climate
scientists use to represent the components that comprise the global climate system,
as well as the sources of uncertainty in these models. With this as background,
we now take up the issue of the potential linkage between anthropogenic climate
change and extreme weather, with particular emphasis on tropical cyclone activity
in the North Atlantic. We frame our discussion in terms of ongoing efforts to arrive
at reliable estimates of future tropical cyclone activity — both on a global and a
regional basis.

Is there a Connection?

The destructive hurricane seasons of 2004 and 2005 in the United States have left
many within the insurance and reinsurance industries openly questioning whether
the observed increases in the number of tropical storms and hurricanes in the North
Atlantic might, in some way, be linked to anthropogenically induced climate change.
As we discussed earlier, the science of climate change offers little in the way of
clear and definitive answers to many of the most pressing issues facing public and
private stakeholders who share a mutual interest in, and concern for, issues pertain-
ing to global environmental change.

For insurers and reinsurers, a key question is this: Will the frequency or the inten-
sity of future tropical cyclone activity be measurably enhanced in a GHG-warmed
world? In approaching this question, it is useful to distinguish between two types of
risk: event risk and outcome risk. Assessments of event risk focus on characteriza-
tions of frequency or likelihood for particular hazards (e.g., hurricane activity in the
North Atlantic); assessments of outcome risk focus on the valuation of outcomes
associated with specific hazards or events (e.g., pre-event estimates of insured loss).
The dichotomy between event risk and outcome risk serves as a useful conceptual
vehicle for exploring the balance of scientific evidence that exists as to the potential
linkage between anthropogenic climate change and extreme weather. In what fol-
lows, we look specifically at ongoing efforts to estimate future changes in hurricane
frequency and intensity, together with changes in vulnerability and exposure.

Estimating Hurricane Frequency

Variability is an endemic feature of the Earth’s climate. Understanding the natural
climatic variability of the globe is therefore central to understanding the potential
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Fig. 3. Changes in global mean surface temperature relative to 1961–1990 (source: NOAA).

influence that anthropogenic factors might have on global climate change. Glob-
ally, the 1980s and 1990s were characterized by unusually warm weather. In fact,
eight of the 10 warmest years in the past century occurred during this time period.
As Figure 3 illustrates, an increase in global mean surface temperature change (of
about 0.3◦C – 0.6◦C) has occurred since about 1860. A cursory glance at this figure
reveals both year-to-year and decade-to-decade variability in the historical record;
and even though there is a distinct warming trend, the increase is nonuniform, with
periods of both cooling and warming.

Turning to the specific issue of hurricane activity in the North Atlantic, Figure 4
illustrates that the mid-1990s marked the beginning of a period of pronounced in-
creases in the annual number of named storms and major hurricanes in this region.
In the Atlantic hurricane season of 2005, for example, there were a record-breaking
27 named storms, 14 of which were hurricanes. Of these 14 hurricanes, seven were
classified as major hurricanes; three of these seven major hurricanes reached Cate-
gory 5 status.

The observed variability in hurricane frequency in the past decade is not so extreme
that it cannot be explained in terms of naturally occurring multi-decadal variability.
The global historical record for tropical cyclones yields several important insights
in this regard. First, it is important to note that globally, there has been no appre-
ciable increase in tropical cyclone activity over the past several decades. Web-
ster et al. [47], for example, note that over the past 30 years, there has been no
trend towards either increases or decreases in the total number of storms seen in
a given year. Indeed, from a global perspective, these results are not surprising, as
the past half-decade or so has seen heightened levels of hurricane activity, whereas
the 1970s, 1980s, and early 1990s were marked by diminished levels of hurricane
activity. One has to look as far back as the 1940s, 1950s, and the early 1960s to find
hurricane activity levels commensurate with present levels.

Regional variability in the number of tropical storms and hurricanes complicates ef-
forts to arrive at a comprehensive and global understanding of the key determinants
of tropical cyclone frequency — be they man-made or naturally occurring. Indeed,
while storms in the North Atlantic have become more frequent since the 1990s,
in other parts of the world — such as the Western and Eastern Pacific — tropical
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Fig. 4. Annual number of named storms and major hurricanes: Atlantic, 1944–2005; named
storms are depicted in blue and major hurricanes are depicted in red (source: NOAA).

cyclone frequency has, in fact, declined since the early 1990s. As Webster et al.
describe, the current situation is one where “against a background of increasing sea
surface temperature, no global trend has emerged in the number of tropical storms
and hurricanes” [emphasis added]. As we discuss below, our current inability to
arrive at global insights has important ramifications for ongoing efforts to arrive at
regional characterizations of the behavioral dynamics of tropical cyclones.

In all of this, we are, of course, keenly interested in deriving reliable estimates
of the frequency of future tropical cyclone activity. As described above, however,
current efforts to utilize the available historical record to discern trends — which
can, in turn, be used as the basis for deriving forward-looking projections of future
tropical cyclone activity — have led to largely inconclusive results.

Given these limitations, climate scientists also pursue a number of global modeling
efforts that seek to arrive at realistic representations of the global climate system;
these representations are then used to produce model-derived projections of future
tropical cyclone activity. While progress has been made in developing increasingly
sophisticated models of the global climate system, the climate change research that
bears most directly on questions concerning potential future changes in hurricane
frequency arising from greenhouse warming is, at best, ambiguous. The major mod-
eling results published in recent years lack consistency in projecting increases or
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decreases in the total number of storms. 22

One area where the empirical studies and the global modeling results are in agree-
ment is in projecting that future changes in tropical cyclone frequency will be re-
gionally dependent. If true, this situation will require modeling efforts that are capa-
ble of rendering informative regional forecasts and scenarios. At the present time,
though, climate scientists’ understanding of tropical cyclogenisis is too incomplete
to render reliable projections about future changes in tropical cyclone frequency.
This observation notwithstanding, what the historical record illustrates with great
clarity is that future changes in hurricane frequency are likely to exhibit consider-
able year-to-year and decade-to-decade variability.

Estimating Hurricane Intensity

The analytical task of discerning trends in tropical cyclone intensity is more com-
plex than that of estimating tropical cyclone frequency. One reason for this is that
there are, in fact, several plausible measures of storm intensity. Table 1 lists sev-
eral measures in common usage. As before, it is useful to begin our discussion by
examining the historical record for indications of how tropical cyclone intensity
has varied over time. The empirical record reveals that, over the past half-century,
tropical and subtropical sea-surface temperatures have shown an overall increase of
approximately 0.2◦C. Although most global modeling studies predict increases in
modeled storm intensities under greenhouse warming scenarios, the statistical evi-
dence in favor of hypotheses that postulate systematic increases in potential storm
intensities is weak. 23 Webster et al., for example, note that globally, since 1970, the
annual number of Category 1 hurricanes has declined, whereas the number of Cat-
egory 2 and Category 3 hurricanes has fluctuated (though the global average has,
nevertheless, remained fairly constant over the same time horizon). Over the same
time period, the number of Category 4 and Category 5 hurricanes has increased.

At present, there is only weak evidence suggesting the possibility of a systematic
increase in the potential intensity of future tropical cyclone activity. Emanuel [13],
for example, reports a discernable upward trend in power dissipation 24 in the North
Atlantic and the Western North Pacific. And while the observed trend is dramatic (a
factor of two increase over the past half century), the underlying causal mechanisms
are far from being well-understood.

In the North Atlantic — consistent with our earlier remarks about storm frequency
— recent increasing trends in Atlantic storm intensity can largely be explained

22See, e.g., Henderson-Sellars et al. [19], Royer et al. [37], and Sugi et al. [42].
23See, e.g., Free et al. [15].
24Power dissipation measures the total amount of energy released by a hurricane over its lifetime. Technically, Emanuel [13]
defines the annual power dissipation index (PDI) as the integral of the third power of the maximum sustained wind speed
over all 6-hour observations at tropical storm intensity or higher and over all tropical cyclones during the year.
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Measures of Intensity

• Maximum Potential Intensity

• Average Intensity

• Average Storm Lifetime

• Average Wind Speed

• Maximum Sustained Wind Speed

• Maximum Wind Gust

• Accumulated Cyclone Energy

• Minimum Central Pressure

• Power Dissipation
Table 1
Common measures of tropical cyclone intensity.

by multi-decadal variations that are, in some respects, better understood than the
physical theories that attempt to relate storm intensity to tropical climate change.
Numerous statistical studies have mined the available empirical record for evidence
of anthropogenically-induced trends; still, no significant anthropogenic trends have
emerged from these studies. 25

Having explored the relevant empirical findings, let us return to the global modeling
studies that we discussed earlier, this time exploring the model-based, theoretical
insights that have emerged in recent years about the influence that anthropogenically-
induced greenhouse warming might have on hurricane activity in the United States.

Early efforts along these lines gave many interested stakeholders pause for concern.
In 1987, for example, Emanuel [12] reported that a doubling of atmospheric CO2

levels would give rise to increased sea-surface temperatures, eventually produc-
ing 40–50% increases in the maximum strength of hurricanes. 26 The very latest
global modeling studies have sought to explore the manner and degree to which
anthropogenically-induced warming influences tropical cyclone intensity. Some
studies suggest that the projected changes in tropical cyclone intensity are small.
Emanuel, for example, reports a 10% increase in wind speed for a 2◦C increase in
tropical sea surface temperature. 27

In interpreting these results for insurance-related risk management contexts, it is
important to recognize that an endemic feature of the types of global simulation

25See, e.g., Landsea et al. [27] and Chan and Liu [9].
26As alarming as these predictions were, it is worth noting that, at around this same time, equally credible scientists were
arguing the reverse, i.e., that greenhouse warming could, in fact, give rise to decreases in hurricane frequency and intensity.
See, e.g., Idso [23] and Idso et al. [22].
27Two sets of published results suggest that Emanuel’s estimates may, in fact, overstate the true value of these projected
increases. Researchers using the GFDL model, for example, report a 5% increase in hurricane wind speeds by 2080 [1,26];
more recently, Michaels et al. [31] report even smaller increases over comparable time horizons.
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studies discussed above is that they lend little insight into questions concerning the
timing of these projected increases. In many of these global modeling studies, mod-
eled changes in tropical cyclone intensity unfold over very extended time horizons.
As Knutson and Tuleya [26] note, “CO2-induced tropical cyclone intensity changes
are unlikely to be detectable in historical observations and will probably not be de-
tectable for decades to come” [emphasis added]. Michaels et al. [31] echo this
belief — and take it, perhaps, one step further — with their assertion that changes
in “future hurricane intensities will be undetectable in the foreseeable future and,
in fact, may never be manifest” [emphasis added].

As before, arriving at reliable assessments of regional climate change is, perhaps,
the greatest challenge facing climate modelers today. The ability to link — concep-
tually and empirically — anthropogenic climate change to storm intensity in ways
that lend themselves to modeling efforts that yield reliable regional forecasts is,
unfortunately, some years away.

Estimating Hurricane Risk Exposure

From a risk management perspective, our discussion above concerning the fre-
quency and intensity of future tropical cyclone activity is, of course, just one-half
of the overall problem. The other half of the problem concerns the vulnerability and
exposure dimensions of hurricane risk. Arriving at reliable estimates of economic
and insured loss requires an understanding of how vulnerable specific geographic
regions or structures are to extreme weather events. In seeking quantified estimates
of vulnerability to extreme weather, modelers begin by characterizing the inventory
of persons and properties at risk. Knowledge about inventory and vulnerability —
combined with knowledge and information about the natural hazard itself — al-
lows risk managers to quantify the expected impacts and outcomes associated with
extreme weather events.

Most efforts to characterize the primary drivers of hurricane risk exposure focus on
two factors:

• How society develops in terms of changing demographics;

• How society prepares itself for storms.

From a risk-based perspective, the vulnerability and exposure dimensions of the
problem will almost surely dominate any influence that variations in storm fre-
quency and intensity — be they caused by natural or man-made factors — will
have on overall characterizations of risk for particular geographic regions of the
country. Indeed, the major source of worry concerning hurricane risk exposure in
the United States is the fact that the size of coastal populations will grow faster than
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Fig. 5. Value of coastal property, 2005–2025: 1/2% growth (source: U.S. Census Bureau;
I.I.I.).
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Fig. 6. Value of coastal property, 2005–2025: 1% growth (source: U.S. Census Bureau;
I.I.I.).

the overall population, thereby boosting the number of persons and the amount and
value of property in the path of potentially destructive hurricanes.

The best available projections of the country’s rapidly changing demographics paint
a potentially dire situation. These projections, when combined with conservative
assumptions about the growth of property ownership per person in coastal areas,
suggests that we will continue to see substantial increases in the value of coastal
properties vulnerable to hurricanes. Figures 5 and 6 show the value of vulnera-
ble coastal properties that will exist in 2015 and 2025 assuming (i) A one-half of
one percent annual increase in the inflation adjusted value of coastal property per
person; and (ii) A one percent annual increase in coastal property holdings per per-
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son. 28 The rapid growth of the Gulf States will lead to an explosion in the value of
vulnerable property, despite the modest per person property growth rates assumed,
compared to the exposure of slower growing regions (such as the Mid-Atlantic and
New England) or the Southeast.

Looking forward, the risk management challenges that arise from these problems
are two-fold in nature. First, research efforts must continue to strive to develop
meaningful regional forecasts of tropical cyclone activity. How uncertainty is char-
acterized and evaluated in these forecasts is an issue very much at the forefront of
current research. Researchers and catastrophe modelers will, of course, continue
to mine the available historical record for emerging patterns and trends, and, over
time, these efforts will lend themselves to predictive exercises that yield insights
that are useful to decision-makers. Second, in the absence of regional forecasts that
engender confidence on the part of decision-makers and risk managers, efforts must
focus on arriving at strategic risk mitigation options that are — to some measurable
degree — flexible, robust, and resilient.

28Note that Florida is included in both the Southeast and Gulf Coast tallies.
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4. The P/C Industry and Extreme Weather

Practical people in the insurance industry may be forgiven their impatience with a
paper on climate change and scientific uncertainty which suggests that we do not,
as yet, know enough about the connection between climate change and extreme
weather to make operable forecasts of what lies ahead. 29 We can, however, use
past information about the connection between insurance industry profitability and
extreme weather events to get a rough idea of the impact that climatic change might
have on the bottom line of insurers, under a wide range of possible worlds.

A Direct Approach to the Bottom Line

One way to proceed is to ask a seemingly simple question: How have extreme
weather events — in this case, hurricanes characterized by very large insured losses
— affected the return on equity earned by insurers in any given year? Figure 7
presents the return on equity for U.S. P/C insurers and reinsurers between 1950
and 2005, with select annotations for years with exceptionally large losses. The first
thing to notice is that large hurricane losses have been experienced in years with ex-
cellent as well as poor industry performance. Indeed, it seems strange to think that
large hurricane losses might not regularly lead to low returns for insurers, though a
moment’s reflection suggests that well-run insurers will structure their portfolio of
risks so that large losses in some lines of business are offset by strong performance
in others, combined with reinsurance and skilled financial management of overall
policyholders’ surplus. A perpetual concern of insurers and underwriters, though,
is how sustainable sound financial performance can be in the face of multiple high-
loss hurricanes, perhaps over the course of successive years.

In this regard, we begin with two notes of caution. First, the following analysis
seeks an answer to a very specific question: What is the impact of very large loss
hurricanes on the return on equity for the US insurance industry as a whole? The
answer to this question may seem obvious, since large loss hurricanes must, by
definition, push aggregate industry returns down. Our question, though, is a bit
subtler: Is there a systematic, quantitative relationship between the number and
size of extreme loss hurricanes and insurance industry return on equity that permits
observers to make informed guesses about the potential impact of climatic change
on the performance of the insurance industry?

29A complete analysis of the economic consequences of scientific uncertainty in broader study would include a review
of the economic theory of climate change, including: a detailed assessment of analytical work on global public goods;
the game theoretic aspects of climate policy in a world of nation states; the public finance and macroeconomic aspects of
pricing climatic changed based externalities, as well as investments by national and international governmental and non-
governmental entities in mitigation. Readers seeking a fuller understanding of the economics of climate change are urgued
to consult the recent books by economic theorist Hirofumi Uzawa, whose recent works – see, e.g., Uzawa [44] – explore the
interaction of climate change, markets, and policy.
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 Fig. 7. Impact of selected large loss hurricanes on return on equity for the insurance indus-
try: 1950 – 2005 (GAAP ROEs, with the exception of the 2005 P/C figure, which is the
return on average surplus; the 2005 figure is the I.I.I. full-year estimate; source: I.I.I..

Second, our aggregate approach has certain inherent limitations that must be kept
in mind when considering our results. The “industry” return on equity is, like all
summary measures, an amalgamation that obscures many important details that
matter for our assessment of how large-loss hurricanes affect insurers. Many insur-
ers face little exposure to hurricane risk, so any connection between hurricanes and
aggregate industry performance is necessarily weaker than that between extreme
storms and, say, homeowners’ lines. The coastal concentration of hurricane losses,
along with the various regulatory systems affecting the operations of insurers in
the relevant states, are important details that the aggregate approach pursued in this
paper does not take into account. In addition, a substantial portion of losses associ-
ated with large hurricanes striking the US mainland are actually borne by foreign
domiciled re-insurers, thereby limiting the extent to which extreme hurricane losses
impinge on the immediate financial condition of US insurers in the year of their
occurrence. However, the transfer of hurricane losses to offshore reinsurers has a
powerful effect on the price, availability, and other terms of future reinsurance deal-
ings between U.S. primary insurers and reinsurers. The resulting dynamics of the
prices, quantities, and limits that emerge in the reinsurance markets are the subject
of future study.

With these two note of caution in mind, we begin by looking first at the frequency of
large hurricane losses, especially compared to total policyholders’ surplus. Figure 8
shows that hurricane losses relative to insurance industry policyholders’ surplus
between 1950 and 2005 have been relatively small, with more than 30 years where
this loss ratio was less than one tenth of one percent. In fact, there have only been
7 years where hurricane loss ratios were 2% or more of policyholders’ surplus. 30

30Hurricane loss data comes from three sources: (1) The Insurance Information Institute’s Insurance Fact Book 2006; (2) The
publication A Half Century of Hurricane Experience by the Insurance Services Office in 2000; and (3) The National Oceanic
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Fig. 8. The distribution of the ratio of hurricane losses to policyholder surplus: 1950 – 2005
(source: I.I.I.).

However, as Figure 8 illustrates, the bulk of large losses have occurred in recent
years, beginning with Hurricane Hugo in 1989, through to the 2004 Quartet and
the Katrina/Rita/Wilma Trio in 2005.

Figure 9 shows the evolution of the ratio of hurricane losses to policyholder surplus
from 1950 – 2005. This figure may be a bit alarming to a casual empiricist, as it
vaguely suggests a hurricane loss ratio cycle of increasing amplitude, which would
be consistent with heightened fears about increasing hurricane activity. These esca-
lating peaks can, however, be explained by many factors, including the spectacular
long-term economic boom and population growth in the southeastern United States
over the past forty years (with much acceleration since the mid-1980s) that has
placed more people and property in harm’s way, thereby increasing the likelihood
of greater storm losses.

Collectively, Figures 7 – 9 offer a muddled picture of the relationship between hur-
ricane losses and insurer profits. On the one hand, Figure 7 suggests no consistent
link between hurricanes and P/C industry profits. Figure 8 suggests that hurricanes
big enough to significantly damage policyholders’surplus are infrequent. Finally,
Figure 9 opens the door — however slightly — to the prospect of increasingly
severe losses, though these losses cannot definitely be linked to climate change.

Econometric analysis can lend some clarity to this muddled situation. It is worth
noting from the outset that the analysis set forth here (the details of which are
presented in Appendix B) fails to detect any consistent connection between large
hurricanes and the return on equity of the insurance industry as a whole. In fact,

and Atmospheric Administration’s “Billion Dollar Weather Disasters” web portal.
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Fig. 9. Evolution of hurricane loss/policyholder surplus ratio: 1950 – 2005 (source: ISO;
I.I.I.).

out results suggest that hurricanes are one of several essentially unpredictable risks
that insurers must consider when covering personal and commercial lines. One ex-
planation for this somewhat counterintuitive result, at least in the U.S., is that U.S.
private insurers do not cover flood losses, so that a substantial part of the financial
wreckage associated with large storms is not covered by private sector insurance
markets.

This result does not mean that large hurricane losses do not affect insurers’ aggre-
gate returns, nor does it mean that large hurricane losses are in some way unimpor-
tant (as if “statistical insignificance” was somehow a synonym for “unimportant”).
The meaning of this statistical exercise is simply that large hurricane losses have no
predictable impact on the recorded profits and, in turn, on the measured financial
performance of the US insurance industry as a whole.

Our point is subtle but can perhaps be clarified through an analogy to baseball:
a given batter may have a higher batting average against left handed pitches than
right handed pitchers but one may still not be able to predict that he will have more
hits against lefties than righties in any given year going forward, or from now until
the end of his career. It all depends on whether this difference is statistically sig-
nificant. If so, we can be sure that our batter’s past success against lefties will be
reproduced in the future only if we can observe enough at bats for his tendencies
to become predictable; if not, we can’t say whether he will or will not be more suc-
cessful against lefties in the future — maybe yes, maybe no. The lack of statistical
significance does not prove the he isn’t more successful against lefties, we just do
not have enough evidence to make consistent predictions about how well he will do
in the future. To say that the size or number of known hurricanes does not impose
a statistically significant and therefore predictable penalty on the financial perfor-
mance of the insurance industry is like saying that we do not have enough evidence
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to say that a hitter will always be more successful against left handed pitchers in the
future even though he has been successful in the past. Once again, statistical sig-
nificance is a statement about the quality and power of evidence required to make
definitive statements in the midst of uncertainty, even if we know that a batter has
so far feasted on left handed pitching, or that hurricanes have been a burden on
insurers’ profits.

The curious reader might be tempted to ask whether we can use the average de-
cline in insurers’ return on equity due to large hurricanes (1.94%) as a measure of
the burden of hurricanes on the insurance industry, or rely on the mean and vari-
ance of large hurricane losses relative to policyholders’ surplus to make educated
guesses about the probability of extreme financial distress associated with extreme
hurricanes. Such a procedure implicitly assumes that (i) we possess a good deal
of knowledge about the probability distribution of hurricane losses relative to pol-
icyholders’ surplus; and (ii) that the parameters of this distribution — whatever
they may be — are either stable or evolving in predictable ways, which amounts
to assuming away the problem of scientific uncertainty posed by climate change.
Neither assumption is correct.

The point of this econometric exercise is to determine whether and to what ex-
tent hurricanes impose a predictable financial penalty on insurers so that we could
then proceed with statistically informed speculation about how any increase in the
frequency or severity of storms might affect the profits of insurers. Unfortunately,
the results of our econometric exercise have not provided evidence that hurricanes
reduce insurers’ ROE in a consistent fashion, thereby making if quite difficult to
assess the price that climate change extracts in terms of insurer profits in the event
of more and more destructive storms.

One important implication of our analysis is that the lack of any statistically signif-
icant link between hurricanes and the rate of return to equity for insurers actually
allows for informed guesses about the effects of a string of high-loss hurricanes on
overall P/C industry losses over time. A conjecture of this sort is possible for two
reasons. First, since hurricanes are not systematically linked to the rate of return
on equity, a big loss in any one year might or might not pull down industry per-
formance relative to trend, depending on the aggregate results of activity in other
lines of business, risk management efforts and strategies, and financial market out-
comes. A big, single storm associated with large losses can only have a substantial
effect on the industry if other aspects of the business are weak as well. Of course,
a tremendously destructive storm — the $100 billion mega-event that many within
the industry fear — could be so far outside the range of losses experienced that it
could strain many companies at once, thereby leading to potentially catastrophic
results for the industry as a whole. This possibility is, however, partly offset by a
second factor, namely, that the definition of a “large” hurricane loss is relative to
the level of total industry policyholders’ surplus at any point in time. A $100 bil-
lion loss would surely be a terrible blow to the industry in 2006, as total surplus is
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estimated to be $427B as of the end of 2005. 31 In any one year, a “large” hurricane
loss is one that is substantial relative to the size of total industry surplus. Table 2
shows the current dollar value of the 10 largest hurricane losses, together with the
level of industry surplus in the year that losses were incurred and the ratio of these
losses to surplus.

 
 

Table Two 
 

Hurricane Year Losses * Total Surplus* Ratio 
Katrina 2005 $38.10 $427.201 8.91% 
Andrew 1992 $20.88 $200.54 10.41% 
Charley 2004 $7.47 $402.26 1.85% 

Ivan 2004 $7.11 $402.26 1.76% 
Hugo 1989 $6.39 $166.44 3.83% 
Wilma 2005 $6.10 $427.20 1.42% 

Rita 2005 $4.70 $427.20 1.10% 
Frances 2004 $4.59 $402.26 1.14% 
Jeanne 2004 $3.65 $402.26 0.91% 

Georges 1998 $3.36 $423.40 0.83% 
WTC 2001 $18.80 $374.36 5.02% 

* in billions of current dollars 
 

                                                 
1 Property/Casualty Preview/Preview, 2006. 

Table 2
Top ten insured losses in current dollars and as a fraction of policyholders surplus (source:
ISO; I.I.I.).

Our analysis reveals strong statistical connections between the return on equity
earned by insurers and (i) the return on equity in the previous year; (ii) the return
on 10-year U.S. government bonds in that year; and (iii) the growth rate of net pre-
miums written over the year. Hurricanes are, by contrast, reduced to the status of
random forces that drive the system in an unsystematic fashion. Figures 10 and 11
illustrate the movement of the 10-year Treasury bond rate and net premiums writ-
ten relative to insurers profitability. We note that no matter what sort of hurricane
measures were included in the model — e.g., the number of hurricanes in a year,
the average strength of storms (as measured by the Saffir/Sampson scale) over a
season, the effect of storms at varying levels of intensity, etc. — hurricanes were
not seen to have a statistically significant impact on insurers’ return on equity.

An important additional influence in the preferred equation is the impact of the
destruction of the World Trade Center on the P/C rate of return in 2001. Indeed,
the 9/11 atrocities had an outsized statistical impact on insurers’ rate of return — a
fall of more than 8 percentage points — that was greater than the direct 5.02% fall
in surplus associated with the event. This apparent discrepancy can be reconciled

31This assumes that the random shocks affecting insurance returns include both hurricane and non-hurricane losses that are
independent of each other, as well as unrelated to past values of P/C insurer returns, the 10-year Treasury bond rate, and
WTC losses. This assumption implies that negative effect hurricane losses are generated by the same normal process that
generates other, non-hurricane losses. However, if hurricane losses are generated by a non-normal process — one with a
negative mean and homoskedastic variance – then the error term for the regression equation is the sum of a normal and
non-normal shock. This implies that all tests of the statistical significance of coefficients, and inferences therefrom, must be
based on a mixed compound distribution.
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Fig. 10. P/C return on equity and the 10-year Treasury bond rate (GAAP ROEs, with the
exception of the 2004/5 P/C figure, which is the return on average surplus; the 2005 figure
is the I.I.I. full-year estimate; source: I.I.I.; Economic Report of the President). 
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Fig. 11. P/C return on equity and yearly premium growth rates (GAAP ROEs, with the
exception of the 2004/5 P/C figure, which is the return on average surplus; the 2005 figure
is the I.I.I. full-year estimate; source: I.I.I.; AM Best).

when we recall that the economic impacts of 9/11 were so great that losses in many
lines of business — not least airlines, ports, and other modes of transportation —
were triggered when the Twin Towers fell. In addition, the statistical significance
of events in 2001 for insurers’ return on equity may be a mixture of the attacks on
9/11 and the downward pull of the Enron debacle, as well as related accounting
scandals on the financial returns to policyholders’ surplus.

The most important features of our analysis are the following:
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• Hurricanes — even those associated with large losses — have no statistically
detectable effect on the P/C industry’s return on equity;

• The losses associated with the destruction of the World Trade Center — 5.02%
of total policyholder surplus, as noted in Table 2 — are, according to the model,
estimated to have cut the insurance industry’s return on equity by about 8.1%;

• The WTC losses (relative to total policyholder surplus) are much less than those
associated with Hurricane Katrina in 2005 (8.33%) and Hurricane Andrew in
1995 (10.41%), but are on par with those associated with the Hurricane Quartet
in 2004 (5.66%).

These observations suggest two possible ways to think about the impacts of large
loss hurricanes (either singly or in combination in a given year): (i) As random
shocks to the industry that generate a longer-term response because of the dynamic
links between past and present rates of return on equity demonstrated by this statis-
tical exercise; or (ii) As monster hurricanes akin in size and scope to another WTC
event that has a very pronounced negative effect on industry profitability, followed
by reverberations into the future. Unfortunately, this second approach is based more
on faith than evidence, since, once again, hurricanes do not have a consistent and
statistically detectable effect on insurance industry returns.

Stormy Weather Ahead?

The current statistical exercise assumes that scientific uncertainty about global cli-
mate change permits insurers to look to the past to make informed guesses about
how future increases in hurricane frequency and severity might affect overall indus-
try profitability. If hurricanes are random negative influences on industry returns,
as our model suggests, then it is nearly impossible to make reasonable guesses as
to the long-term impact of a rise in the frequency and severity of hurricanes on
profitability. However, we can construct another version of our model to arrive at a
very rough estimate of the separate effects of “ordinary” random events (including
small-loss hurricanes) and large-loss hurricanes on industry returns. 32

Our analysis suggests that hurricane losses are random, negative shocks to insurers’
returns that push profitability down immediately, with swiftly declining effects on
future earnings (the reasons for these smallish feedback effects are explained in the
appendix). Figure 12 presents four possible time-paths suggested by the estimated
model in four possible hurricane loss scenarios:

32This macro-level analysis should be augmented by a detailed time series analysis of the connections between hurricanes,
premiums and the profitability of specific lines — especially in homeowners’ insurance — in specific states. This sort of
analysis would require theoretical and empirical modeling of markets under various regulatory constraints which introduce
complications in the dynamic and statistical properties of models that are well beyond the scope of the current exercise.
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(1) No Quartet-scale hurricane losses between 2006 and 2018;

(2) One Quartet-scale storm;

(3) Two Quartet-scale storms;

(4) Three Quartet-scale storms.

These scenarios all assume that (i) the 10-year Treasury bond rate holds steady at
4.5% between 2006 and 2018; (ii) the rate of growth of net premiums is 8%; and
(iii) there is no other major catastrophic event during this period — like another
terrorist attack on the scale of 9/11. The scenarios consider Quartet-scale losses
rather than Katrina-scale losses in the hope that the Great Flooding of New Orleans
in 2005 was a unique disaster, unlikely to be repeated. This implies that the nation
has learned to invest more of our tax dollars in protective capital so as to prevent a
repeat of the suffering that followed Katrina’s landfall in some other hapless venue.
One extreme nightmare situation — a Katrina-scale loss followed by a 9/11-scale
loss — is considered below, but only for the purposes of testing the consequences
of a particularly extreme form of bad luck.

It is important to remember that the current exercise does not assume away terror-
ism, but rather, distinguishes between the seperate and distinct impacts of terrorism
and large hurricanes on insurer profits. Recall that one result of our analysis is that
the 9/11 attacks, combined with the downdraft of the accounting scandals of 2001,
had a profoundly negative, if temporary, effect on insurers’ return on equity that
exceeded that associated with Katrina — in large part because the atrocities of that
day generated further insured losses in other sectors of the economy due to the air-
line industry shutdown, business interruption in various locations, etc. Our strategy
at this stage is to consider the impact of hurricane-scale losses on their own, and
then to interrogate our analysis to determine the effect of a truly terrifying sce-
nario where a series of Quartet-scale storms is accompanied by another 9/11-scale
terrorist event.

Figure 12 is known as an impulse-response diagram — a workhorse in analytical
economics, finance, and engineering — which illustrates the effect of an important
economic shock on the evolution of variables of interest. The point of the diagram is
to asses the impact of an important change — in this case, a series of Quartet-scale
losses — on the return on equity over time, relative to what would have transpired
had the shock not occurred. The dashed line in the diagram is the long-run return
of equity for insurers’ that would obtain for the indefinite future if the interest
rate, premium growth, and terrorism loss assumptions noted above obtain. Each
hurricane shock is represented by a different line in the diagram, permitting an
evaluation of what the statistical model suggests will happen under each case.

This chart suggests a number of potential insights into the effects of a series of ma-
jor storms on insurers’ profitability. The long-run return or “no-Quartet” path is the
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Fig. 12. Response of return on equity to one or more Quartet-scale storm losses.

reference path used to judge the impact of multiple Quartet-scale storms on insurer
profits. A single Quartet-scale storm four years from the beginning of the simula-
tion reduces insurers’ return on equity by 5% in 2007, as shown by the sudden drop
of the path indicated by squares. However, insurer return on equity recovers quite
quickly thereafter — assuming no change in either premium growth or the 10-year
Treasury bond rates — so that insurer returns associated with the one-Quartet path
are close to the reference path by the year 2011, with no change in any other com-
ponent of profitability. If the U.S. is struck by two Quartet-scale storms in 2007 and
2008, then return on equity is about 8.5% lower than the no-Quartet path by the end
of year 2008, while three Quartets in years 2007 through 2009 results in returns that
are slightly over 10% lower than in a world without major storm losses. Of course,
a two or three storm sequence will push down industry returns for an extended
period of time, though both the two- and three-Quartet paths display remarkable
resilience.

The results depicted in Figure 12 contain a hopeful message for insurers who under-
standably dread the nightmare of a sequence of Quartet-scale storms over a number
of years. The resilience of industry returns in the event of even a sequence of mon-
ster storms and the associated losses suggests that insurers’ underwriting, pricing,
and financial management policies will, in all likelihood, be adjusted to address
threats to profitability posed by the possibility of increased hurricane frequency
and severity. Note that the statistical analysis which grounds this simulation neces-
sarily assumes that insurers’ continue to operate as they have in the past, even in
the face of a sequence of large storms, with the consequence that the time-path of
returns in the worse-case scenario converges to within 20% of the reference path
four years after the last great storm. The negative effect of a series of high-loss hur-
ricanes can also be offset by high interest rates, improved underwriting margins, or
by other mechanisms for offsetting very large losses.
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Fig. 13. Response of return on equity to nightmare compound scenarios.

A Short Glimpse at a Compound Nightmare

We now briefly consider a truly miserable scenario: a Katrina-scale hurricane loss
in 2007 followed by a 9/11 terrorist loss in 2008. Figure 13 illustrates the projected
time-path for return on equity in the unlikely and unfortunate event that a massive
storm loss is subsequently followed by an even larger terrorism loss. The figure
shows that insurers’ profitability would be badly damaged by such a sequence of
events, but would, again, recover to within 75% of the “no-storms / no-9/11” path
by 2012. 33

Insurance Industry Profitability in Context

In placing these analytical results in context, we must remember that the resilience
of the industry’s profitability in the face of a series of Quartet-scale storms is con-
nected to the usual mechanisms of retrenchment by insurers in the face of large
losses: higher premiums, higher deductibles, lower limits, and reduced insurance
availability in high-risk areas. The robust adjustment process of profitability to
large shocks displayed above, though comforting and indicative of the consider-
able power of market mechanisms, still leads to the withdrawal of capital from
regions and lines of business hit by large, concentrated losses in favor of more
lucrative lines within insurance and the broader financial services sector. A more
finely grained econometric analysis — based, perhaps, on a dynamic, stochastic
general equilibrium model of pricing, availability and risk portfolio choice by the
industry — would reveal the statistical anatomy of industry adaptation observed in
practice and consistent with economic common sense: restoration of insurers’ prof-

33This analysis is conducted under the assumption that TRIEA is no longer in effect.
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itability in the wake of a run of bad hurricanes includes the reallocation of capital
to more remunerative and safer activities.

The withdrawal of capital from high-risk areas hit by big storms will naturally
lead to more expensive insurance in states where regulators allow market pricing to
operate, or to an even more severe reduction in availability where government pre-
vents the price mechanism from working. In this matter, as in many others areas of
insurance, high storm losses will be followed by one of two possible price/quantity
regimes: (i) A regime where prices are high enough to reflect the frequency and
severity of losses in storm-battered regions, in a manner that compensates insurers’
for the risks they take on; or (ii) A regime of controlled prices where insurance
is scarce because government refuses to acknowledge the fact that insurers can-
not provide protection for people and property in high-risk places at prices that do
not reflect the risk. 34 A third option — the increased socialization of insurance by
the creation and expansion of state sponsored insurance and re-insurance facilities
in affected states — is a likely short-term response to the problem of the declin-
ing availability and affordability of insurance in the aftermath of large hurricane
losses. However, these mechanisms turn out to be so freighted with well known
incentive and fiscal problems that they have generally not become long term solu-
tions to the inevitability of expensive insurance in regions where private insurers
must cope with substantial exposures to large hurricane losses. Though it would
seem obvious, enormous effort continues to be expended in trying to escape the
reality that where places, things, and people are expensive to insure, insurance will
be expensive

34These remarks should not be interpreted as either implicit or explicit support for a federal government role in providing
reinsurance in cases of natural disasters. The considerations raised in Jaffee and Russell’s [25] excellent economic analysis
of arguments for and against a natural catastrophe reinsurance scheme must still be explored in far more detail before
a reasonable conclusion about the feasibility — to say nothing about the desirability — of a natural catastrophe fund is
reached. Our purpose here in assessing the resilience of the insurance industry in the face of a series of large hurricane losses
is to assess the financial consequences of extreme weather events. How a natural catastrophe reinsurance system would alter
the protective or efficiency properties of insurance markets remains an open question.
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5. Concluding Remarks

In this paper, we have sought to explore the nature and consequences of scientific
uncertainty in the matter of global climate dynamics for insurers. Contemporary
climate science is an impressive intellectual endeavor that has revealed much about
the complex dynamics of the Earth’s climate system, enough to put us on notice that
climate change is a natural phenomenon, increasingly driven and amplified by hu-
man activity. Indeed, climate science has confirmed the expanding contribution of
anthroprogenic climate change to the gradual and millennial changes in our planet’s
climate system that are the source of weather, as well as the more alarming possi-
bility that human activity might lead to abrupt climatic change that radically alters
the nature of the Earth’s weather. Yet, climate science offers few hints about how, or
when, the Earth’s climate system will change, much less how these changes might
affect weather patterns in particular regions, or the frequency or severity of extreme
weather events like hurricanes, tornadoes, heat waves, torrential rains or even ris-
ing sea levels. Advances in climate science have shown us that the Earth’s weather
systems are incredibly complex and mathematically chaotic, and unlikely to fully
reveal their internal mechanisms to scientists for some time to come. For now, what
we know for certain is that our planet’s climate is changing, that this change could
lead to an increase in the frequency and severity of dangerous weather at some
time in the future, and that institutions charged with the pricing, management, and
mitigation of risk should pay close attention to scientific developments.

As part of our presentation, we explored the profitability consequences of massive
losses from one form of extreme weather — a string of Quartet-scale storms strik-
ing the United States, as well as the prospect of a Katrina-scale storm combined
with a mass terror attack on the scale of 9/11 — on the theory that prudence in
the face of scientific uncertainty warrants consideration of worst-case scenarios.
The results of this econometric approach to exploring the relation between insurer
profitability and extreme weather suggest a high level of macro-resilience for the
insurance industry, in the sense that the system — with its current operating pro-
cedures — can withstand a series of severe shocks. Yet, as our discussion above
suggests, the industry’s recovery mechanism involves a series of price and quan-
tity adjustments, along with regulatory and public policy developments, that will
alter the availability and affordability of insurance, along with insurers methods for
managing claims in the face of disaster. A detailed, micro-economic analysis of the
insurance industry’s response to the challenges posed by climate change involves
a much more tightly focused consideration of the interaction of particular perils —
tornadoes, flood, hurricanes, heat — in particular regions, with specific regulatory
approaches in light of state and federal public policy constraints, as well as the fi-
nancial conditions facing insurers. Of course, the whole issue of how insurers deal
with gradual, as opposed to abrupt, climate change is itself a vast subject in its own
right, not least because abrupt climate change threatens to make it difficult if not
impossible for companies to use their accumulated knowledge about past risks and

36



losses to predict what may be an utterly different weather future.

The good news in all of this — aside from the fact that climate science gives little
support to the idea that a string of weather catastrophes is more likely to befall us
in the immediate future than over the past few decades or even longer — is that
we have time to apply climate science, economics, risk management, and (lest we
forget) common sense to the problem of pricing, managing and mitigating extreme
weather risk. This study is the first in a series of projects that will explore various
aspects of extreme weather and insurance in the shadow of climate change. Ulti-
mately, our objective is to increase the industry’s store of intellectual capital in the
face of an uncertain, but potentially vast, challenge to its capacity to protect people
and property.
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Appendix A: Reduced-Scale Climate Models

Present-day efforts to confront and, ultimately, manage the prospect of anthro-
pogenic climate change have lead researchers to propose a broad range of analyti-
cal frameworks and methodologies for characterizing and evaluating the various di-
mensions of the problem. In recent years, it has become commonplace and fashion-
able for economists, policy analysts, and climate researchers to focus their efforts
on the development of a class of models commonly referred to as integrated assess-
ment models of global climate change. Integrated assessment models (IAMs) are
characterized by their broad-based, comprehensive approach to the analysis of the
climate change problem. IAMs seek to represent the most salient features of the cli-
mate change problem, and are typically comprised of analytically tractable linkages
between (i) models of atmospheric, oceanic, and biological processes; (ii) models
of the global climate system; and (iii) models of the socio-economic processes that
influence, and are affected by, climatic change. 35 In the years to come, insurers
and underwriters will need to embrace these methods, and make them a part of the
way they structure and evaluate their underwriting and risk management decisions
with regard to extreme weather risks.

As discussed in Section 2, global energy balance models (EBMs) constitute the
simplest means by which to model the climate system of the Earth. Historically,
such models have played an important role in our understanding of the various
components and processes that influence climatic change. The earliest EBMs date
back to the late 1960s, beginning with the work of Budyko [7] and Sellers [39]
demonstrating that equator-to-pole energy transport and radiation streams are fun-
damental processes of the global climate system.

The fundamental principle underlying all EBMs is that the incoming and the out-
going radiation for the globe is—in the long run—balanced. In more formal terms,
the rate of change of the surface temperature, T , with time, t, is represented as the
difference between net incoming and net outgoing radiant energies. This relation-
ship between time, temperature, and radiant energies can be stated informally as
follows:

K
∆T

∆ t
= R ↓ −R ↑, (1)

where K is the “thermal inertia” or heat capacity 36 of the system, and R ↓ and
R ↑ are the incoming and outgoing radiation fluxes, respectively.

35For insightful discussions on current approaches to climate change related integrated assessment modeling, see, e.g.,
Dowlatabadi [11], Parson [36], and Toth [43].
36The heat capacity of a body is defined as the ratio of the amount of heat energy that a body is supplied with to its
corresponding temperature rise.
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Globally Averaged One-Box Model

Eq. (1) serves as the conceptual basis for a variety of EBMs. Schneider and Mass [38],
for example, propose a one-box time-dependent globally averaged model of the
Earth’s climate system. The model they put forth is zero-dimensional, in that the
Earth is treated as a single point in space, characterized by a global-mean surface
temperature whose value at time t is denoted T (t). The model is formally speci-
fied in terms of a global energy balance equation, with heat storage expressed in
terms of solar energy absorbed minus infrared energy emitted to space. If we let
∆T (t) = T (t + h) − T (t) denote the change in global-mean surface temperature
during the finite time interval [ t, t + h), and define the time-step ∆t = h, then the
global energy balance for this model is given by

K lim
h→0

∆T (t)

h
= K

dT (t)

dt
= Q [1− α(T (t))]− Rir ↑(T (t)), (2)

where K is the heat capacity coefficient, Q is the annually averaged solar radia-
tion received by the earth (a constant with respect to both time and temperature),
α(T (t)) is the planetary albedo, 37 and Rir ↑ (T (t)) is the outgoing infrared radia-
tion to space.

In order to render Eq. (2) more amenable to analysis, we linearize α(T (t)) and
Rir ↑(T (t)) as follows [38,46]:

α(T (t)) = a + b T (t), (3)
Rir ↑(T (t)) = x + y T (t). (4)

Typically, the real-valued coefficients a, b, x, and y in Eqs. (3) and (4) are treated as
empirically-determined constants that account for the greenhouse effect of clouds,
water vapor, and CO2 [30].

Eq. (4) provides a conceptually simple means by which to combine the effects of
surface emissivity and atmospheric transmisivity. For our purposes here, it is use-
ful to modify this equation slightly. Specifically, in order to explore the response
of the one-box model to external CO2 forcing, we generalize Eq. (4) by lumping
together the effects of increasing atmospheric CO2 concentrations due to anthro-
pogenic CO2-equivalent emissions into the coefficient x. If we treat anthropogenic
CO2 as an exogenously specified variable that is dependent on time, but not on
T (t), then Eq. (4) can be rewritten as

Rir ↑(t, T (t)) = x(t) + y T (t), (5)

37Planetary albedo is defined as the ratio of reflected to incident radiation, and provides a measure of the reflectivity of the
earth’s surface and its atmosphere.
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where the function Rir ↑ is now defined on a domain that consists of both time,
t, and global mean surface temperature, T (t). Intuitively, Eq. (5) states that the
outgoing infrared radiation to space can, in principle, change over time, even if
global-mean temperature remains constant.

Now, substituting Eqs. (3) and (5) into Eq. (2) yields

K
dT (t)

dt
= Q[1− (a + b T (t))] − [x(t) + y T (t)]

= (1− a)Q− (b Q + y)T (t) − x(t). (6)

In order to estimate the impact of rising CO2 concentrations on climate, relative to
some pre-industrial baseline which we denote by t0, at time t = t0, we assume that
the system is in a state of climatic equilibrium; that is, the time derivative dT (t)/dt
evaluated at time t = t0 is equal to zero. At equilibrium, we are able to establish
the following initial condition for Eq. (6):

(b Q + y)T (t0) = (1− a)Q− x(t0). (7)

For t ≥ t0, let T (t) = T (t0) + [T (t)− T (t0)]. Also, to simplify notation, let

τ(t) = T (t)− T (t0)

denote the difference between global-mean surface temperature T at times t and t0,
respectively. Eq. (6) can now be written as

K
dT (t)

dt
= K

d

dt
[T (t0) + τ(t)] = K

dτ(t)

dt
= (1− a)Q− (b Q + y)T (t0) − (b Q + y)τ(t) − x(t). (8)

Now, substituting Eq. (7) into Eq. (8) yields

K
dτ(t)

dt
= (1− a)Q− [(1− a)Q− x(t0)] − (b Q + y)τ(t) − x(t)

= x(t0) − x(t) − (b Q + y)τ(t). (9)

By defining F (t) = x(t0)− x(t) and λ = y + b Q, Eq. (9) can be expressed as

K
dτ(t)

dt
= F (t)− λ τ(t), (10)
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where F (t) denotes the change (from equilibrium) of that part of the time-dependent
outgoing longwave radiation that is independent of temperature. Intuitively, we rec-
ognize that as concentrations of CO2 in the atmosphere increase, the values that x(t)
takes on decrease and F (t) > 0, which agrees with our intuition about the effects
of increased CO2 in the atmosphere.

In terms of a finite time interval [ t, t + h), for some time-step h > 0, when h is
small, Eq. (10) can be approximated by

K [τ(t + h)− τ(t)] ≈ h [F (ξ)− λ τ(ξ)], (11)

for any t ≤ ξ < t + h. Now, if we choose h = 1 and let ξ = t, then Eq. (11)
becomes

K [τ(t + 1)− τ(t)] ≈ F (t)− λ τ(t),

which gives rise to

τ(t + 1) ≈ τ(t) +
1

K
[F (t)− λ τ(t)]. (12)

Equivalently, Eq. (12) can be expressed as

τ(t) ≈ τ(t− 1) +
1

K
[F (t− 1)− λ τ(t− 1)]. (13)

It bears mentioning that if we choose ξ = t+h−ε, for small ε satisfying h > ε > 0,
then, letting h = 1, Eq. (11) becomes

K [τ(t)− τ(t− 1)] ≈ [F (t− ε)− λ τ(t− ε)],

in which case

τ(t) ≈ τ(t− 1) +
1

K
[F (t− ε)− λ τ(t− ε)].

As ε → 0, we obtain

τ(t) ≈ τ(t− 1) +
1

K
[F (t)− λ τ(t)].

Thus, from a purely analytical vantage point, there exists some degree of flexibility
as to whether F and τ are treated as contemporaneous or lagged variables.
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Globally Averaged Two-Box Model

The climate model given by Eq. (13) is concerned only with the atmosphere of the
Earth. Most atmospheric processes, however, are strongly coupled to the Earth’s
oceans. In what follows, we extend the model presented above to include ocean-
atmosphere interactions.

The globally averaged two-box model that we consider here was originally devel-
oped by Schneider and Thompson [38], and versions of it are used by Nordhaus [35]
and others in several recent integrated assessments of global climate change.

In this globally averaged model, the ocean-atmosphere system is represented by
two “boxes” or layers: one layer for land and another for the world ocean. The upper
box consists of a land fraction, fL, and is characterized by a globally and annually
averaged temperature, T (t); the lower box consists of an ocean fraction, 1−fL, and
is characterized by a globally and annually averaged temperature, T ∗(t). Each of
these layers is assumed to be internally well-mixed. As in the case of the one-box
model, the two-box model is driven by external solar forcing, Q — the absorbed
portion of which is scaled by the planetary albedo α(T (t)) — and emits infrared
radiation, Rir ↑(t, T (t)), to space. The heat transfer rate between the upper and the
lower box is proportional to the volume rate, V̇ (t), of water exchange between the
two boxes.

The global energy balance for the two-box model is formally specified by the fol-
lowing system of equations:

K1
dT (t)

dt
= Q [1− α(T (t))] − Rir ↑(t, T (t))

− cw

σg

V̇ (t) [T (t)− T ∗(t)] , (14)

K2
dT ∗(t)

dt
=

cw

σg

V̇ (t) [T (t)− T ∗(t)] , (15)

where K1 and K2 are the thermal inertias for the upper and lower box, respectively,
cw is the volumetric heat capacity of water, and σg is the global surface area. 38

The thermal inertias K1 and K2 are given by

38We note that the two-box model described by Eqs. (14) and (15) can be viewed intuitively as a generalization of the
one-box model developed above. Specifically, the model can be specified in terms of the weighted sum

K1
dT (t)

dt
+ K2

dT ∗(t)

dt
= Q [1− α(T (t))]−Rir ↑(t, T (t)),

where K2
dT∗(t)

dt
is defined by Eq. (15).

42



K1 =
cw

σg

V, (16)

K2 =
cw

σg

V ∗, (17)

where V and V ∗ are the water-equivalent volumes of the upper and the lower box,
respectively. Note that in this model, the water-equivalent volumes are fixed with
respect to both time and temperature.

As in the case of the one-box model, we are ultimately interested in examining the
behavior of the two-box model to external, anthropogenic CO2 forcing. Looking,
first, at Eq. (14), we use the linearized forms for α(T (t)) and Rir ↑ (t, T (t)) given
previously by Eqs. (3) and (5), respectively, to rewrite Eq. (14) as

K1
dT (t)

dt
= Q [1− (a + b T (t))] − [x + y T (t)]

− cw

σg

V̇ (t) [T (t)− T ∗(t)]

= (1− a)Q− (b Q + y)T (t) − x(t)

− cw

σg

V̇ (t) [T (t)− T ∗(t)] . (18)

As before, the variable t0 denotes some pre-industrial baseline relative to which
we wish to measure climatic change. At time t0, we assume that the system is in a
state of climatic equilibrium. At equilibrium, two conditions obtain: first, the time
derivative dT (t)/dt evaluated at time t = t0 is equal to zero; second, the surface
temperature at time t = t0, T (t0), is equal to the ocean temperature at time t = t0,
T ∗(t0). Thus, at time t = t0, in equilibrium, Eq. (18) yields

(b Q + y)T (t0) = (1− a)Q− x(t0). (19)

Now, let τ(t) = T (t) − T (t0) denote the difference between global-mean surface
temperature at times t and t0, respectively; similarly, let τ ∗(t) = T ∗(t) − T ∗(t0)
denote the difference between ocean temperature at times t and t0, respectively.
Using these definitions, the two-box model specified by Eqs. (18) and (15) becomes

K1
dT (t)

dt
= K1

d

dt
[T (t0) + τ(t)] = K1

dτ(t)

dt

= (1− a)Q− (b Q + y)[T (t0) + τ(t)] − x(t)

− cw

σg

V̇ (t) [T (t0)− T ∗(t0) + τ(t)− τ ∗(t)]

= (1− a)Q− (b Q + y)T (t0) − (b Q + y)τ(t) − x(t)
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− cw

σg

V̇ (t) [T (t0)− T ∗(t0) + τ(t)− τ ∗(t)] ,

K2
dT ∗(t)

dt
= K2

d

dt
[T ∗(t0) + τ ∗(t)] = K2

dτ ∗(t)

dt

=
cw

σg

V̇ (t) [T (t0)− T ∗(t0) + τ(t)− τ ∗(t)] .

Since, in equilibrium, T (t0) equals T ∗(t0), these two equations can be rewritten as

K1
dτ(t)

dt
= (1− a)Q− (b Q + y)T (t0) − (b Q + y)τ(t) − x(t)

− cw

σg

V̇ (t) [τ(t)− τ ∗(t)] , (20)

K2
dτ ∗(t)

dt
=

cw

σg

V̇ (t) [τ(t)− τ ∗(t)] . (21)

At equilibrium, Eq. (19) obtains, in which case Eq. (20) becomes

K1
dτ(t)

dt
= (1− a)Q− [(1− a)Q− x(t0)] − (b Q + y)τ(t) − x(t)

− cw

σg

V̇ (t) [τ(t)− τ ∗(t)]

= x(t0) − x(t) − (b Q + y)τ(t)− cw

σg

V̇ (t) [τ(t)− τ ∗(t)] . (22)

As before, letting F (t) = x(t0)− x(t) and λ = y + b Q, Eq. (22) can be rewritten
as

K1
dτ(t)

dt
= F (t) − λ τ(t) − cw

σg

V̇ (t) [τ(t)− τ ∗(t)] . (23)

In this equation, F (t) is again interpreted as the change — from a specified baseline
— of that portion of the outgoing longwave radiation, Rir ↑, that is dependent upon
time, but is independent of temperature.

In this representation, we are interested in exploring the effects that upper and lower
box mixing have on the climate variable of interest, namely, the upper box temper-
ature, T (t). Following Broecker [6] and Schneider and Thompson [38], we use the
following parameterization for upper and lower box mixing:

V̇ (t) =
V ∗

νd

, (24)
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where V ∗ is defined as before, and νd is the ventilation time of the world deep ocean.
Substituting Eqs. (24) and (17) into Eqs. (23) and (21), the system of equations for
the two-box model becomes

K1
dτ(t)

dt
= F (t) − λ τ(t) − K2

νd

[T (t)− T ∗(t)] , (25)

K2
dτ ∗(t)

dt
=

K2

νd

[T (t)− T ∗(t)] . (26)

As in the case of the one-box model, for computational purposes, it is useful to ex-
press the two-box model in finite-difference form. To this end, consider a finite time
interval [ t, t + h), for some nonzero time-step h. For small values of h, Eqs. (25)
and (26) are approximated by

K1 [τ(t + h)− τ(t)]≈h
(
F (ξ)− λ τ(ξ) − K2

νd

[τ(ξ)− τ ∗(ξ)]
)

,

K2 [τ ∗(t + h)− τ ∗(t)]≈h
(

K2

νd

[τ(ξ)− τ ∗(ξ)]
)

,

for any t ≤ ξ < t + h. If we let ξ = t, and make our time-step unity, then this
system of equations becomes

τ(t + 1)≈ τ(t) +
1

K1

(
F (t)− λ τ(t) − K2

νd

[τ(t)− τ ∗(t)]
)

,

τ ∗(t + 1)≈ τ ∗(t) +
1

K2

(
K2

νd

[τ(t)− τ ∗(t)]
)

.

Equivalently, if we let t = t− 1, then the two-box model can be expressed as

τ(t)≈ τ(t− 1) +
1

K1

(
F (t− 1) − λ τ(t− 1)

− K2

νd

[τ(t− 1)− τ ∗(t− 1)]

)
, (27)

τ ∗(t)≈ τ ∗(t− 1) +
1

νd

[τ(t− 1)− τ ∗(t− 1)] . (28)

Eqs. (27) and (28) can be represented succinctly in matrix form as
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 τ(t)

τ ∗(t)

 =

Γ11 Γ12

Γ21 Γ22


 τ(t− 1)

τ ∗(t− 1)

+
1

K1

F (t− 1)

0

 , (29)

where

Γ11 = − 1

K1

(
λ +

K2

νd

)
,

Γ12 =
K2

K1νd

,

Γ21 =
1

νd

,

Γ22 = − 1

νd

.

In this structural representation, we note that thermal forcing due to changes in
atmospheric CO2 concentrations is decoupled from the climatic variables, and is
treated as an exogenous input to the system.

In order to simplify notation, we define a (2 × 1) column vector yt and a (2 × 2)
parameter matrix Γ as

yt ≡

 τ(t)

τ ∗(t)

 ,

and

Γ ≡

Γ11 Γ12

Γ21 Γ22

 ,

where the matrix elements Γij are defined as above. In addition, we define a (2×1)
vector ut as

ut ≡

 1
K1

F (t)

0

 .

Using the above definitions, system (29) can be expressed succinctly as

yt = Γyt−1 + ut−1. (30)

Intuitively, we recognize that Eq. (30) holds true for all values of t, in which case
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yt−1 = Γyt−2 + ut−2. (31)

If we let (Γ)k denote the kth power of the parameter matrix Γ and, in addition,
define (Γ)0 to be the identity matrix, then substituting Eq. (31) into Eq. (30) yields

yt =Γ(Γyt−2 + ut−2) + ut−1

= (Γ)2 yt−2 + Γut−2 + ut−1.

By induction, it is easily verified that

yt = (Γ)t y0 +
t∑

j=1

(Γ)j−1 ut−j. (32)

Eq. (32) provides a computationally simple means by which to compute numerical
values of the vector time series yt.

Long-term climate predictions are a central component of integrated assessments
of global climate change, which seek to explore the socio-economic impacts as-
sociated with climate change in tandem with considerations about the science of
climate change. The computational costs entailed in running large-scale climate
models makes their use in portfolio management and underwriting contexts a prac-
tical impossibility. The reduced-scale models outlined above provide risk assessors
and underwriters with an instrumental basis for balancing the need for scientific ad-
equacy and realism, on the one hand, against the need for computational efficiency
and model transparency, on the other.
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Appendix B: An Econometric Analysis of P/C Industry Resilience

A number of single equation models of the link between the rate of return on
P/C surplus and various measures of hurricane activity have been estimated (us-
ing standard econometric estimation techniques 39 ), with some surprising results.
One model of particular interest was of the form

ri
t = β0 + β1Ht + β2Zt + β3r

10
t + β4r

i
t−1 + β5D

9/11
t + β6PremGrowt + εt,

where

ri
t = return on equity for insurers in year t;

Ht = number of hurricanes with billion dollar losses in year t (2005 dollars);

Zt = index of mean intensity of hurricanes in year t;

r10
t = interest rate on ten year Treasury bonds;

D
9/11
t = binary variable for 9/11 terrorist attack (1 = 9/11 attack);

PremGrowt = growth rate of net written premiums in year t;

εt = standard normal i.i.d. error term.

The data used to estimate this equation were derived from the NOAA hurricane data
base (hurricane number and strength data, from 1980–2005), the Economic Report
of the President (Treasury bond rates), and the Insurance Information Institute (an-
nual P/C rate of return data from 1950–2005). The index (Z) for hurricane intensity
is the average category number for hurricanes based on the Saffir/Sampson scale.

The equation above consistently yielded statistically insignificant estimates for the
number and intensity of hurricanes in any given year — both when lagged P/C
returns were included (Column 1) and excluded (Column 2), where Table 3 contains
the relevant information on coefficient values, corrected t-statistics (in parentheses),
the standard error of the estimate (SEE), the value of the Durbin h-statistic (h), and
the estimate of the first-order serial correlation coefficient for the OLS error (ρ)
for various model specifications that we rejected. As noted in the text of the paper,
other specifications included separate variable for hurricanes of different power —
Categories 1 through 5 — as both dummy variables and as cardinal measures of
storm power. Again, none of these variables were statistically significant.

39See, e.g., Hayashi [18].
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Variable 1 2 3 4 
Constant 3.254 6.021 3.027 4.045 

 (1.727) (3.730) (1.652) (2.309) 
Ht  0.855 0.694 0.418 ***** 
 (1.460) (1.226) (1.061) ***** 

Zt  -0.463 -0.374 ***** 0.016 
 (-1.027) (-0.857) ***** (0.053) 

rt
10 0.235 0.261 0.298 0.155 
 (1.365) (1.564) (1.332) (0.980) 

rt−1 0.304 ***** 0.298 0.292 
 (2.746) ***** (3.118) (3.095) 

Dt  -9.335 -9.960 -9.178 -9.711 
 (-4.108) (-4.534) (-4.134) (-4.432) 

tPremGrow  0.223 0.167 0.241 0.230 
 (3.120) (2.172) (3.126) (2.921) 

SEE 2.101 2.530 2.079 2.035 
DW ***** 1.689 ***** ***** 

Durbin h 7.490 ***** 7.341 7.524 
ρ 0.037 ***** 0.280 0.232 

Time Period 1980-2005 1980-2005 1980-2005 1980-2005 
 
 
 

Table 3
Various specifications of the P/C return on equity equation.

The preferred equation (on statistical grounds) is

ri
t = β0 + β3r

10
t + β4r

i
t−1 + β5D

9/11
t + β6PremGrowt + εt,

which is estimated as

ri
t = 0.479 + 0.043r10

t + 0.625ri
t−1 − 8.351D

9/11
t + 0.323PremGrowt

(0.323) (0.187) (4.79) (−2.328) (3.238)

over the period 1953–2005 (t-statistics in parentheses), with SEE = 3.107, ρ =
0.443, and Durbin h = 6.559. The correlation matrix associated with this equation
is presented in Table 4. 

 
 i

tr 1−  10
tr  11/9

tD  tPremGrow  
i

tr 1−  1    
10
tr  0.668 1   

11/9
tD  -0.033 -0.042 1  

tPremGrow  0.072 0.338 0.038 1 
 
 

Table 4
Correlation matrix for econometric analysis.

Note that the lagged value of insurers’ return on equity is highly correlated with
the current value of the 10-year Treasury bond rate, indicating a high degree of
collinearity between these two variables, which accounts for the low value of the
t-statistic on the Treasury bond rate variable. In addition, the Treasury bond rate
has a moderate degree of correlation with net premium growth.
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